Gall, P., Danesi, S. & Simonazzi, T. Polypropylene based polymer blends: areas of application and new trends. Polym. Eng. Science. 24544 (1984).
Kuo, CF & Chen, SH Development of Dyable Polypropylene Functional Fabric and Optimization of Process Parameters Part I: Development of Dyable Modified Polypropylene with Optimization of Process Parameters. Text. Res. J 911509-1522 (2021).
Yamamoto, H. The properties of polypropylene multifilament textile. Sen’i. Gakkaishi. 61319 (2005).
Tehrani, AR, Shoushtari, AM, Malek, RM, and Abdous, M. Effect of chemical oxidation treatment on the dyeability of polypropylene. pigment. 6395-100 (2004).
Miyazaki, K., Tabata, I. & Teruo, H. Effects of molecular structure on dyeing performance and color fastness of yellow dyes applied to polypropylene fibers in supercritical carbon dioxide. Color. Technology. 12851-59 (2012).
Miyazaki, K., Tabata, I. & Teruo, H. Relationship between color fastness and color intensity of polypropylene fabrics dyed in supercritical carbon dioxide: effect of chemical structure of dyes 1,4 -bis(alkylamino)anthraquinone on dye performance. Color. Technology. 12860–67 (2011).
Abou-Elmaaty, TM, Abdeldayem, SA, Ramadan, SM, Ahmed, KS & Plutino, MR Coloring and multifunctionalization of polypropylene fabrics with selenium nanoparticles. Polymers 132483 (2021).
Huang, X., Zhang, WD & Ma, SB The effect of hyperbranched polymers on the dyeing properties of polypropylene fibers. Adv Mat Res. 399–4011059-1062 (2011).
Google Scholar
Sahinbaskan, B., Kocak, ED, Merdan, N. & Akalin, M. Dyeing of Polypropylene Blends Using Microwave Energy. J.Eng. Fiber Fabr. 1220–27 (2017).
Toshniwal, L., Fan, Q. & Ugbolue, SC Polypropylene fibers that can be dyed via nanotechnology. J.Appl. Polym. Science. 106706–711 (2007).
Abou Elmaaty, T. Chapter 20 – Recent Advances in the Wet Processing of Textiles Using Supercritical Carbon Dioxide, The Textile Institute Book Series, Green Chemistry for Sustainable Textiles 279–299 (Woodhead Publishing, 2021).
Google Scholar
Sorour, H., Abou Elmaaty, T., Mousa, A., Gaafar, H. & Hebeish, A. Development of textile dyeing using green supercritical fluid technology: a review. Mat int. 3, 0373-0390 (2020).
Banchero, M. Recent Advances in Supercritical Fluid Dyeing. Color. Technology. 136317-335 (2020).
Zizovic, I. Applications of supercritical fluids in the design of new antimicrobial materials. Molecules 252491 (2020).
Abate, Montana et al. Supercritical CO2 dyeing of polyester fabrics with photochromic dyes to make UV-sensing smart textiles. pigment. 183108671 (2020).
Orhan, M., Demirci, F., Kocer, H. & Nierstrasz, V. Application of supercritical carbon dioxide using hydantoin acrylamide for biocidal functionalization of polyester. J. Superscript. Fluids. 165104986 (2020).
Fan, Y., Zhang, YQ, Yan, K. & Long, JJ Synthesis of a Novel Reactive Disperse Dye Involving a Versatile Bridge Group for Long-Lasting Dyeing of Natural Fibers in Supercritical Carbon Dioxide. Adv. Science. 61801368 (2019).
Penthalaa, R., Heoa, G., Kima, H., Leeb, I. & Kob, E. (2020). Synthesis of azo and anthraquinone dyes and dyeing of nylon-6,6 in supercritical carbon dioxide. J.CO2 Useful. 38 ,49–58 (2020).
Abou Elmaaty, T. et al. A pilot scale waterless dye of pure cotton under supercritical carbon dioxide. Carbohydrates. Polym. Technology. Appl. 1100010 (2020).
Google Scholar
Zaghloula, DN et al. Influence of the additive organic base on the dyeing of cotton fabric under supercritical carbon dioxide using a disperse dye reactive with fluorotriazine and study of the optimal dyeing conditions. J. Superscript. Fluids. 17405243 (2021).
Google Scholar
Chen, Y., Niu, M., Yuan, S. & Teng, H. Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption. Appl. Surf. Science. 264171–175 (2013).
Ayele, M., Tesfaye, T., Alemu, D, Limeneh, M. & Sithole, B. Natural dyeing of cotton fabric with mango tree extracts: a step towards sustainable dyeing. S. Chem. Pharmacy. 17100–293 (2020).
Jaxel, J. et al. Easy synthesis of 1-butylamino- and 1,4-bis(butylamino)-2-alkyl-9,10-anthraquinone dyes for better supercritical carbon dioxide dyeing. pigment. 173107991 (2020).
El-Kadi, SM, Mahmoud, MK, Sayed-Ahmed, KA & El-Hendawy, MA Comparison between silver nanoparticles and silver nitrate as an antifungal agent. Int. J. Nanosci. Nanotechnology. 4(1), 5–1 (2018).
Google Scholar
Abou Elmaaty, T., El-Taweel, F. & Elsisi, H. Waterless dyeing of polyester and nylon 6 fabrics with novel 2-oxoacetohydrazonoyl cyanide derivatives under supercritical carbon dioxide medium. Polym fibers. 19887–893 (2018).
Abou Elmaaty, T., Elsisi, H., Negm, I., Ayad, S. & Sofan, M. Novel nano silica-assisted synthesis of azo pyrazole for durable dyeing and antimicrobial finishing of cotton fabrics in dioxide of supercritical carbon. J Supercritical fluids. 179105354 (2022).
Ma, J., Abou-Elmaaty, T. & Okubayashi, S. Effect of supercritical carbon dioxide on dyeability and physical properties of ultra-high molecular weight polyethylene fiber. Autex Res. J 19228-235 (2019).
Abou Elmaaty, T. et al. Optimization of an environmentally friendly dyeing process in a laboratory and pilot scale supercritical carbon dioxide unit for polypropylene fabrics with new specialty disperse dyes. J.CO2 Useful. 33, 365–371 (2019).
Abou Elmaaty, T., Sofan, M., Kosbar, T., Elsisi, H. & Negm, I. Green approach to dyeing PET and nylon 6 fabrics with new pyrazole disperse dyes under supercritical carbon dioxide and its aqueous analogue. Polym fibers. 202510-2521 (2019).
Abou Elmaaty, T., Elsisi, H. & Negm, I. Dyeing characteristics of polypropylene fabric dyed with special disperse dyes using supercritical carbon dioxide. Polym fibers. 221314-1319 (2021).
Abou Elmaaty, T., El-Taweel, F., Elsisi, H. & Okubayashi, S. Waterless dyeing of polypropylene fabric under supercritical carbon dioxide and comparison with its aqueous analogue. J. Superscript. Fluids. 139114-121 (2018).
Konduru, N., Dey, S., Sajid, M., Owais, M. & Ahmed, N. Synthesis and antibacterial and antifungal evaluation of selected chalcone sulfones and bisulfones. EUR. J.Med. Chem. 5923–30 (2013).
Wen, ZH, Chao, CH & Wu, MH Aneuroprotective sulfone of marine origin and in vivo anti-inflammatory activity of an analogue. EUR. J.Med. Chem. 45(12), 5998–6004 (2010).
Madduluri, V., Baig, N., Chander, S., Murugesan, S. & Sah, A. The Mo(VI) complex catalyzed the synthesis of sulfones and their modification for anti-HIV activities. Cat. Com. 137105931–105935 (2020).
Janki, JP, Mayur, IM, Prakashsingh, MC & Kishor, HC Powerful biological investigation of a new class of sulfone derivatives with a quinolinyl-cyclopropane analogue, J.Iran. Chem. soc. 1(2022).
Upare, AA et al. Design, synthesis and biological evaluation of (E)-5-styryl-1,2,4-oxadiazoles as antituberculosis agents. Bioorg. Chem. 86507-512 (2019).
Long, Y. Synthesis and biological evaluation of heteroaryl styryl sulfone derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 26(23), 5674–5678 (2016).
So much. et al. Synthesis and biological evaluation of 2-benzenesulfonylalkyl-5-substituted-sulfanyl-[1,3,4]-oxadiazoles as potential anti-hepatitis B virus agents. Antiviral Res. 71(1), 7-14 (2006).
Holshouser, MH, Loeffler, LJ & Hall, IH Synthesis and antitumor activity of a series of sulfonated 1,4-naphthoquinone analogues. J.Med. Chem. 24(7), 853–858 (1981).
Liao, SK Dyeing of nylon-6,6 with hydrophobic reactive dyes by supercritical treatment. J.Polym. Res. 11285-291 (2004).
Long, J. et al. Dyeing of cotton fabric with a reactive disperse dye in supercritical carbon dioxide. J. Superscript. Fluids. 6913–20 (2012).
Zheng, L. et al. Procedures for dyeing polyester fibers in supercritical carbon dioxide using a special dyeing frame. J.Eng. Fiber Fabr. ten37–46 (2015).
Bhattacharyya, AR et al. Crystallization and orientation studies in a single-walled polypropylene/carbon nanotube composite. J.Polym. Res. 442373-2377 (2003).
Bach, E., Cleve, E. & Schollmeyer, E. Past, present and future of supercritical fluid dyeing technology – an overview. Rev. Prog. Color 88102 (2002).
Google Scholar